Mathematical Biosciences and Engineering (May 2021)

Durability evaluation of highway tunnel lining structure based on matter element extension-simple correlation function method-cloud model: A case study

  • Qingfu Li ,
  • Huade Zhou ,
  • Hua Zhang

DOI
https://doi.org/10.3934/mbe.2021202
Journal volume & issue
Vol. 18, no. 4
pp. 4027 – 4054

Abstract

Read online

With the acceleration of infrastructure construction in various countries, more and more highway tunnels have been built. As a permanent structure to maintain the long-term stability and durability of the tunnel, the tunnel lining structure (TLS) is prone to durability damage in the later operation process, which affects the safety of traffic and the whole loading capacity of the tunnel, so it is very important to evaluate the durability of the TLS. Nowadays, the TLS durability evaluation methods ignore the ambiguity and randomness of the lining structure (LS) durability evaluation index, which have certain limitations. In order to evaluate the durability of highway TLS scientifically and rationally, this paper proposes a method for evaluating the durability of highway TLS based on the matter-element extension (MEE)- simple correlation function (SCF) method- cloud model (CM). A case study was carried out by combining the advantages of the above three methods, a LS durability evaluation model was established, and based on the relevant data from the actual inspection of a highway tunnel lining durability disease in China, the model was used to evaluate the durability of the lining of this highway tunnel, and the durability grades were equivalently divided into five grades: in good shape(I), slightly damaged(II), medium damaged(III), severely damaged(IV), extremely dangerous(V). The result show that this tunnel lining belongs to IV, and the result of this evaluation method is in accordance with the actual damage condition of the project, and the accuracy reaches 92.75%. At the same time, a comparative study was carried out in combination with the AHP-Extenics to verify the reasonableness and feasibility of this method. This study provides a new method for durability evaluation of LS, offers a theory basis for judging the durability of highway TLS, and lays a foundation for subsequent maintenance and prevention.

Keywords