Scientific Reports (May 2017)

A single-walker approach for studying quasi-nonergodic systems

  • Zilvinas Rimas,
  • Sergei N. Taraskin

DOI
https://doi.org/10.1038/s41598-017-01704-5
Journal volume & issue
Vol. 7, no. 1
pp. 1 – 12

Abstract

Read online

Abstract The jump-walking Monte-Carlo algorithm is revisited and updated to study the equilibrium properties of systems exhibiting quasi-nonergodicity. It is designed for a single processing thread as opposed to currently predominant algorithms for large parallel processing systems. The updated algorithm is tested on the Ising model and applied to the lattice-gas model for sorption in aerogel at low temperatures, when dynamics of the system is critically slowed down. It is demonstrated that the updated jump-walking simulations are able to produce equilibrium isotherms which are typically hidden by the hysteresis effect characteristic of the standard single-flip simulations.