Diabetology & Metabolic Syndrome (Oct 2021)

Exercise prevents HFD-induced insulin resistance risk: involvement of TNF-α level regulated by vagus nerve-related anti-inflammatory pathway in the spleen

  • Zhengxi Huang,
  • Jialing Tang,
  • Kai Ji

DOI
https://doi.org/10.1186/s13098-021-00712-w
Journal volume & issue
Vol. 13, no. 1
pp. 1 – 9

Abstract

Read online

Abstract Objectives Regular physical exercise can improve insulin resistance in insulin target tissues. However, the mechanisms about the beneficial effect of exercise on insulin resistance are not yet fully resolved. This study was carried out to address whether insulin resistance improvement by exercise is involved in an anti-inflammatory pathway in the spleen in high-fat diet (HFD) feeding mice. Methods Male C57Bl/6J mice with or without subdiaphragmatic vagotomy (sVNS) were subjected to medium-intensity treadmill exercise during HFD feeding. Glucose tolerance test and insulin tolerance test were detected, and spleen acetylcholine level, choline acetyltransferase activity (ChAT), protein kinase C (PKC) and tumor necrosis factor-alpha (TNF-α) were assayed. Results We found that exercise significantly improves HFD-induced glucose intolerance and insulin resistance, along with an increase in acetylcholine level, ChAT activity, and PKC activity, and decrease in TNF-α level in the system and the spleen from HFD-fed mice. However, sVNS abolished the beneficial effect of exercise on glucose intolerance and insulin resistance, decreased acetylcholine level, ChAT activity, and PKC activity, and increase TNF-α level of the spleen in HFD-mice exercise intervention. Conclusions These data reveal that the prevention of HFD-associated insulin resistance by exercise intervention involves reducing splenic TNF-α level, which is mediated by cholinergic anti-inflammatory activity via influencing PKC activity, ChAT activity, and acetylcholine concentration in mice spleen.

Keywords