The Astrophysical Journal (Jan 2024)

Quasi-stars as a Means of Rapid Black Hole Growth in the Early Universe

  • Eric R. Coughlin,
  • Mitchell C. Begelman

DOI
https://doi.org/10.3847/1538-4357/ad5723
Journal volume & issue
Vol. 970, no. 2
p. 158

Abstract

Read online

JWST observations demonstrate that supermassive black holes (SMBHs) exist by redshifts z ≳ 10, providing further evidence for “direct collapse” black hole (BH) formation, whereby massive (∼10 ^3–5 M _⊙ ) SMBH seeds are generated within a few million years as a byproduct of the rapid inflow of gas into the centers of protogalaxies. Here we analyze the intermediate “quasi-star” phase that accompanies some direct-collapse models, during which a natal BH accretes mass from and energetically sustains (through accretion) an overlying gaseous envelope. We argue that previous estimates of the maximum BH mass that can be reached during this stage, ∼1% of the total quasi-star mass, are unphysical, and arise from underestimating the efficiency with which energy can be transported outward from regions close to the BH. We construct new quasi-star models that consist of an inner, “saturated convection” region (which conforms to a convection-dominated accretion flow near the BH) matched to an outer, adiabatic envelope. These solutions exist up to a BH mass of ∼60% of the total quasi-star mass, at which point the adiabatic envelope contains only 2% of the mass (with the remaining ∼38% in the saturated-convection region), and this upper limit is reached within a time of 20–40 Myr. We conclude that quasi-stars remain a viable route for producing SMBHs at large redshifts, which is consistent with recent JWST observations.

Keywords