Atmosphere (May 2024)

Using HawkEye Level-2 Satellite Data for Remote Sensing Tasks in the Presence of Dust Aerosol

  • Anna Papkova,
  • Darya Kalinskaya,
  • Evgeny Shybanov

DOI
https://doi.org/10.3390/atmos15050617
Journal volume & issue
Vol. 15, no. 5
p. 617

Abstract

Read online

This paper is the first to examine the operation of the HawkEye satellite in the presence of dust aerosol. The study region is the Black Sea. Dust transport dates were identified using visual inspection of satellite imagery, back-kinematic HYSPLIT trajectory analysis, CALIPSO aerosol stratification and typing maps, and the global forecasting model SILAM. In a comparative analysis of in-situ and satellite measurements of the remote sensing reflectance, an error in the atmospheric correction of HawkEye measurements was found both for a clean atmosphere and in the presence of an absorbing aerosol. It is shown that, on average, the dependence of the atmospheric correction error on wavelength has the form of a power function of the form from λ−3 to λ−9. The largest errors are in the short-wavelength region of the spectrum (412–443 nm) for the dust and dusty marine aerosol domination dates. A comparative analysis of satellite and in situ measurements of the optical characteristics of the atmosphere, namely the AOD and the Ångström parameter, was carried out. It is shown that the aerosol model used by HawkEye underestimates the Angström parameter and, most likely, large errors and outliers in satellite measurements are associated with this.

Keywords