Technologies (Aug 2023)

Tendency on the Application of Drill-Down Analysis in Scientific Studies: A Systematic Review

  • Victor Hugo Silva-Blancas,
  • José Manuel Álvarez-Alvarado,
  • Ana Marcela Herrera-Navarro,
  • Juvenal Rodríguez-Reséndiz

DOI
https://doi.org/10.3390/technologies11040112
Journal volume & issue
Vol. 11, no. 4
p. 112

Abstract

Read online

With the fact that new server technologies are coming to market, it is necessary to update or create new methodologies for data analysis and exploitation. Applied methodologies go from decision tree categorization to artificial neural networks (ANN) usage, which implement artificial intelligence (AI) for decision making. One of the least used strategies is drill-down analysis (DD), belonging to the decision trees subcategory, which because of not having AI resources has lost interest among researchers. However, its easy implementation makes it a suitable tool for database processing systems. This research has developed a systematic review to understand the prospective of DD analysis on scientific literature in order to establish a knowledge platform and establish if it is convenient to drive it to integration with superior methodologies, as it would be those based on ANN, and produce a better diagnosis in future works. A total of 80 scientific articles were reviewed from 1997 to 2023, showing a high frequency in 2021 and experimental as the predominant methodology. From a total of 100 problems solved, 42% were using the experimental methodology, 34% descriptive, 17% comparative, and just 7% post facto. We detected 14 unsolved problems, from which 50% fall in the experimental area. At the same time, by study type, methodologies included correlation studies, processes, decision trees, plain queries, granularity, and labeling. It was observed that just one work focuses on mathematics, which reduces new knowledge production expectations. Additionally, just one work manifested ANN usage.

Keywords