Agronomic Linked Data (AgroLD): A knowledge-based system to enable integrative biology in agronomy.

PLoS ONE. 2018;13(11):e0198270 DOI 10.1371/journal.pone.0198270

 

Journal Homepage

Journal Title: PLoS ONE

ISSN: 1932-6203 (Online)

Publisher: Public Library of Science (PLoS)

LCC Subject Category: Medicine | Science

Country of publisher: United States

Language of fulltext: English

Full-text formats available: PDF, HTML, XML

 

AUTHORS

Aravind Venkatesan
Gildas Tagny Ngompe
Nordine El Hassouni
Imene Chentli
Valentin Guignon
Clement Jonquet
Manuel Ruiz
Pierre Larmande

EDITORIAL INFORMATION

Peer review

Editorial Board

Instructions for authors

Time From Submission to Publication: 24 weeks

 

Abstract | Full Text

Recent advances in high-throughput technologies have resulted in a tremendous increase in the amount of omics data produced in plant science. This increase, in conjunction with the heterogeneity and variability of the data, presents a major challenge to adopt an integrative research approach. We are facing an urgent need to effectively integrate and assimilate complementary datasets to understand the biological system as a whole. The Semantic Web offers technologies for the integration of heterogeneous data and their transformation into explicit knowledge thanks to ontologies. We have developed the Agronomic Linked Data (AgroLD- www.agrold.org), a knowledge-based system relying on Semantic Web technologies and exploiting standard domain ontologies, to integrate data about plant species of high interest for the plant science community e.g., rice, wheat, arabidopsis. We present some integration results of the project, which initially focused on genomics, proteomics and phenomics. AgroLD is now an RDF (Resource Description Format) knowledge base of 100M triples created by annotating and integrating more than 50 datasets coming from 10 data sources-such as Gramene.org and TropGeneDB-with 10 ontologies-such as the Gene Ontology and Plant Trait Ontology. Our evaluation results show users appreciate the multiple query modes which support different use cases. AgroLD's objective is to offer a domain specific knowledge platform to solve complex biological and agronomical questions related to the implication of genes/proteins in, for instances, plant disease resistance or high yield traits. We expect the resolution of these questions to facilitate the formulation of new scientific hypotheses to be validated with a knowledge-oriented approach.