ISPRS Annals of the Photogrammetry, Remote Sensing and Spatial Information Sciences (May 2017)

ARCHETYPAL ANALYSIS FOR SPARSE REPRESENTATION-BASED HYPERSPECTRAL SUB-PIXEL QUANTIFICATION

  • L. Drees,
  • R. Roscher

DOI
https://doi.org/10.5194/isprs-annals-IV-1-W1-133-2017
Journal volume & issue
Vol. IV-1-W1
pp. 133 – 139

Abstract

Read online

This paper focuses on the quantification of land cover fractions in an urban area of Berlin, Germany, using simulated hyperspectral EnMAP data with a spatial resolution of 30m×30m. For this, sparse representation is applied, where each pixel with unknown surface characteristics is expressed by a weighted linear combination of elementary spectra with known land cover class. The elementary spectra are determined from image reference data using simplex volume maximization, which is a fast heuristic technique for archetypal analysis. In the experiments, the estimation of class fractions based on the archetypal spectral library is compared to the estimation obtained by a manually designed spectral library by means of reconstruction error, mean absolute error of the fraction estimates, sum of fractions and the number of used elementary spectra. We will show, that a collection of archetypes can be an adequate and efficient alternative to the spectral library with respect to mentioned criteria.