Photonics (May 2022)
The Optimization of Metal Nitride Coupled Plasmon Waveguide Resonance Sensors Using a Genetic Algorithm for Sensing the Thickness and Refractive Index of Diamond-like Carbon Thin Films
Abstract
We theoretically designed the Kretschmann configuration coupled plasmon-waveguide resonance (CPWR) sensors, composed of thin films of metal nitrides. The thicknesses of the layers of the CPWR sensors were optimized using a genetic algorithm. The optimized CPWR sensors were applied to simultaneously measure the thickness and refractive index (RI) of diamond-like carbon (DLC) films. The field profiles and the sensitivity of the CPWR sensors in response to thin DLC films were studied using the finite-different time-domain technique and the transfer matrix method. The genetic algorithm method predicted that the two-mode CPWR sensors could simultaneously analyze the thickness and RI of the DLC films as thin as 1.0 nm at a wavelength of 1550 nm. The simulations showed that the angular sensitivity toward the refractive index changes of the DLC films of the optimized CPWR sensors was comparable to that of traditional CPWR sensors.
Keywords