Journal of Advances in Modeling Earth Systems (Mar 2022)

Modeling Intra‐ and Interannual Variability of BVOC Emissions From Maize, Oil‐Seed Rape, and Ryegrass

  • Felix Havermann,
  • Andrea Ghirardo,
  • Jörg‐Peter Schnitzler,
  • Claas Nendel,
  • Mathias Hoffmann,
  • David Kraus,
  • Rüdiger Grote

DOI
https://doi.org/10.1029/2021MS002683
Journal volume & issue
Vol. 14, no. 3
pp. n/a – n/a

Abstract

Read online

Abstract Air chemistry is affected by the emission of biogenic volatile organic compounds (BVOCs), which originate from almost all plants in varying qualities and quantities. They also vary widely among different crops, an aspect that has been largely neglected in emission inventories. In particular, bioenergy‐related species can emit mixtures of highly reactive compounds that have received little attention so far. For such species, long‐term field observations of BVOC exchange from relevant crops covering different phenological phases are scarcely available. Therefore, we measured and modeled the emission of three prominent European bioenergy crops (maize, ryegrass, and oil‐seed rape) for full rotations in north‐eastern Germany. Using a proton transfer reaction–mass spectrometer combined with automatically moving large canopy chambers, we were able to quantify the characteristic seasonal BVOC flux dynamics of each crop species. The measured BVOC fluxes were used to parameterize and evaluate the BVOC emission module (JJv) of the physiology‐oriented LandscapeDNDC model, which was enhanced to cover de novo emissions as well as those from plant storage pools. Parameters are defined for each compound individually. The model is used for simulating total compound‐specific reactivity over several years and also to evaluate the importance of these emissions for air chemistry. We can demonstrate substantial differences between the investigated crops with oil‐seed rape having 37‐fold higher total annual emissions than maize. However, due to a higher chemical reactivity of the emitted blend in maize, potential impacts on atmospheric OH‐chemistry are only 6‐fold higher.

Keywords