IUCrJ (Mar 2015)
Lipidic cubic phase serial millisecond crystallography using synchrotron radiation
- Przemyslaw Nogly,
- Daniel James,
- Dingjie Wang,
- Thomas A. White,
- Nadia Zatsepin,
- Anastasya Shilova,
- Garrett Nelson,
- Haiguang Liu,
- Linda Johansson,
- Michael Heymann,
- Kathrin Jaeger,
- Markus Metz,
- Cecilia Wickstrand,
- Wenting Wu,
- Petra Båth,
- Peter Berntsen,
- Dominik Oberthuer,
- Valerie Panneels,
- Vadim Cherezov,
- Henry Chapman,
- Gebhard Schertler,
- Richard Neutze,
- John Spence,
- Isabel Moraes,
- Manfred Burghammer,
- Joerg Standfuss,
- Uwe Weierstall
Affiliations
- Przemyslaw Nogly
- Laboratory for Biomolecular Research, Paul Scherrer Institute, Villigen 5232, Switzerland
- Daniel James
- Department of Physics, Arizona State University, Tempe, AZ 85287, USA
- Dingjie Wang
- Department of Physics, Arizona State University, Tempe, AZ 85287, USA
- Thomas A. White
- Center for Free-Electron Laser Science, Deutsches Elektronen-Synchrotron DESY, Hamburg 22607, Germany
- Nadia Zatsepin
- Department of Physics, Arizona State University, Tempe, AZ 85287, USA
- Anastasya Shilova
- European Synchrotron Radiation Facility, Grenoble Cedex 9, F-38043, France
- Garrett Nelson
- Department of Physics, Arizona State University, Tempe, AZ 85287, USA
- Haiguang Liu
- Department of Physics, Arizona State University, Tempe, AZ 85287, USA
- Linda Johansson
- Department of Integrative Structural and Computational Biology, Scripps Research Institute, La Jolla, California USA
- Michael Heymann
- Center for Free-Electron Laser Science, Deutsches Elektronen-Synchrotron DESY, Hamburg 22607, Germany
- Kathrin Jaeger
- Laboratory for Biomolecular Research, Paul Scherrer Institute, Villigen 5232, Switzerland
- Markus Metz
- Center for Free-Electron Laser Science, Deutsches Elektronen-Synchrotron DESY, Hamburg 22607, Germany
- Cecilia Wickstrand
- Department of Chemistry and Molecular Biology, University of Gothenburg, Gothenburg, Sweden
- Wenting Wu
- Laboratory for Biomolecular Research, Paul Scherrer Institute, Villigen 5232, Switzerland
- Petra Båth
- Department of Chemistry and Molecular Biology, University of Gothenburg, Gothenburg, Sweden
- Peter Berntsen
- Department of Chemistry and Molecular Biology, University of Gothenburg, Gothenburg, Sweden
- Dominik Oberthuer
- Center for Free-Electron Laser Science, Deutsches Elektronen-Synchrotron DESY, Hamburg 22607, Germany
- Valerie Panneels
- Laboratory for Biomolecular Research, Paul Scherrer Institute, Villigen 5232, Switzerland
- Vadim Cherezov
- Department of Integrative Structural and Computational Biology, Scripps Research Institute, La Jolla, California USA
- Henry Chapman
- Center for Free-Electron Laser Science, Deutsches Elektronen-Synchrotron DESY, Hamburg 22607, Germany
- Gebhard Schertler
- Laboratory for Biomolecular Research, Paul Scherrer Institute, Villigen 5232, Switzerland
- Richard Neutze
- Department of Chemistry and Molecular Biology, University of Gothenburg, Gothenburg, Sweden
- John Spence
- Department of Physics, Arizona State University, Tempe, AZ 85287, USA
- Isabel Moraes
- Membrane Protein Laboratory, Diamond Light Source, Harwell Science and Innovation Campus, Chilton, Oxfordshire OX11 0DE, England
- Manfred Burghammer
- European Synchrotron Radiation Facility, Grenoble Cedex 9, F-38043, France
- Joerg Standfuss
- Laboratory for Biomolecular Research, Paul Scherrer Institute, Villigen 5232, Switzerland
- Uwe Weierstall
- Department of Physics, Arizona State University, Tempe, AZ 85287, USA
- DOI
- https://doi.org/10.1107/S2052252514026487
- Journal volume & issue
-
Vol. 2,
no. 2
pp. 168 – 176
Abstract
Lipidic cubic phases (LCPs) have emerged as successful matrixes for the crystallization of membrane proteins. Moreover, the viscous LCP also provides a highly effective delivery medium for serial femtosecond crystallography (SFX) at X-ray free-electron lasers (XFELs). Here, the adaptation of this technology to perform serial millisecond crystallography (SMX) at more widely available synchrotron microfocus beamlines is described. Compared with conventional microcrystallography, LCP-SMX eliminates the need for difficult handling of individual crystals and allows for data collection at room temperature. The technology is demonstrated by solving a structure of the light-driven proton-pump bacteriorhodopsin (bR) at a resolution of 2.4 Å. The room-temperature structure of bR is very similar to previous cryogenic structures but shows small yet distinct differences in the retinal ligand and proton-transfer pathway.
Keywords