Geography and Sustainability (Mar 2020)
COVID-19: Challenges to GIS with Big Data
Abstract
The outbreak of the 2019 novel coronavirus disease (COVID-19) has caused more than 100,000 people infected and thousands of deaths. Currently, the number of infections and deaths is still increasing rapidly. COVID-19 seriously threatens human health, production, life, social functioning and international relations. In the fight against COVID-19, Geographic Information Systems (GIS) and big data technologies have played an important role in many aspects, including the rapid aggregation of multi-source big data, rapid visualization of epidemic information, spatial tracking of confirmed cases, prediction of regional transmission, spatial segmentation of the epidemic risk and prevention level, balancing and management of the supply and demand of material resources, and social-emotional guidance and panic elimination, which provided solid spatial information support for decision-making, measures formulation, and effectiveness assessment of COVID-19 prevention and control. GIS has developed and matured relatively quickly and has a complete technological route for data preparation, platform construction, model construction, and map production. However, for the struggle against the widespread epidemic, the main challenge is finding strategies to adjust traditional technical methods and improve speed and accuracy of information provision for social management. At the data level, in the era of big data, data no longer come mainly from the government but are gathered from more diverse enterprises. As a result, the use of GIS faces difficulties in data acquisition and the integration of heterogeneous data, which requires governments, businesses, and academic institutions to jointly promote the formulation of relevant policies. At the technical level, spatial analysis methods for big data are in the ascendancy. Currently and for a long time in the future, the development of GIS should be strengthened to form a data-driven system for rapid knowledge acquisition, which signifies that GIS should be used to reinforce the social operation parameterization of models and methods, especially when providing support for social management.