Communications Earth & Environment (Nov 2024)
The key role of forest disturbance in reconciling estimates of the northern carbon sink
- Michael O’Sullivan,
- Stephen Sitch,
- Pierre Friedlingstein,
- Ingrid T. Luijkx,
- Wouter Peters,
- Thais M. Rosan,
- Almut Arneth,
- Vivek K. Arora,
- Naveen Chandra,
- Frédéric Chevallier,
- Philippe Ciais,
- Stefanie Falk,
- Liang Feng,
- Thomas Gasser,
- Richard A. Houghton,
- Atul K. Jain,
- Etsushi Kato,
- Daniel Kennedy,
- Jürgen Knauer,
- Matthew J. McGrath,
- Yosuke Niwa,
- Paul I. Palmer,
- Prabir K. Patra,
- Julia Pongratz,
- Benjamin Poulter,
- Christian Rödenbeck,
- Clemens Schwingshackl,
- Qing Sun,
- Hanqin Tian,
- Anthony P. Walker,
- Dongxu Yang,
- Wenping Yuan,
- Xu Yue,
- Sönke Zaehle
Affiliations
- Michael O’Sullivan
- Faculty of Environment, Science and Economy, University of Exeter
- Stephen Sitch
- Faculty of Environment, Science and Economy, University of Exeter
- Pierre Friedlingstein
- Faculty of Environment, Science and Economy, University of Exeter
- Ingrid T. Luijkx
- Environmental Sciences Group, Wageningen University
- Wouter Peters
- Environmental Sciences Group, Wageningen University
- Thais M. Rosan
- Faculty of Environment, Science and Economy, University of Exeter
- Almut Arneth
- Karlsruhe Institute of Technology, Institute of Meteorology and Climate Research/Atmospheric Environmental Research
- Vivek K. Arora
- Canadian Centre for Climate Modelling and Analysis
- Naveen Chandra
- Research Institute for Global Change, JAMSTEC
- Frédéric Chevallier
- Laboratoire des Sciences du Climat et de l’Environnement, LSCE/IPSL, CEA-CNRS-UVSQ, Université Paris-Saclay
- Philippe Ciais
- Laboratoire des Sciences du Climat et de l’Environnement, LSCE/IPSL, CEA-CNRS-UVSQ, Université Paris-Saclay
- Stefanie Falk
- Ludwig-Maximilians-Universität München
- Liang Feng
- National Centre for Earth Observation, University of Edinburgh
- Thomas Gasser
- International Institute for Applied Systems Analysis (IIASA)
- Richard A. Houghton
- Woodwell Climate Research Center
- Atul K. Jain
- Department of Atmospheric Sciences, University of Illinois
- Etsushi Kato
- Institute of Applied Energy (IAE), Minato-ku
- Daniel Kennedy
- National Center for Atmospheric Research, Climate and Global Dynamics, Terrestrial Sciences Section
- Jürgen Knauer
- Hawkesbury Institute for the Environment, Western Sydney University
- Matthew J. McGrath
- Laboratoire des Sciences du Climat et de l’Environnement, LSCE/IPSL, CEA-CNRS-UVSQ, Université Paris-Saclay
- Yosuke Niwa
- Earth System Division, National Institute for Environmental Studies
- Paul I. Palmer
- National Centre for Earth Observation, University of Edinburgh
- Prabir K. Patra
- Research Institute for Global Change, JAMSTEC
- Julia Pongratz
- Ludwig-Maximilians-Universität München
- Benjamin Poulter
- Biospheric Sciences Laboratory, NASA Goddard Space Flight Center
- Christian Rödenbeck
- Max Planck Institute for Biogeochemistry
- Clemens Schwingshackl
- Ludwig-Maximilians-Universität München
- Qing Sun
- Climate and Environmental Physics, Physics Institute, University of Bern
- Hanqin Tian
- Schiller Institute for Integrated Science and Society, Department of Earth and Environmental Sciences, Boston College
- Anthony P. Walker
- Environmental Sciences Division and Climate Change Science Institute, Oak Ridge National Laboratory
- Dongxu Yang
- Carbon Neutrality Research Center, Institute of Atmospheric Physics, Chinese Academy of Sciences
- Wenping Yuan
- School of Atmospheric Sciences, Sun Yat-sen University, Zhuhai
- Xu Yue
- School of Environmental Science and Engineering, Nanjing University of Information Science and Technology (NUIST)
- Sönke Zaehle
- Max Planck Institute for Biogeochemistry
- DOI
- https://doi.org/10.1038/s43247-024-01827-4
- Journal volume & issue
-
Vol. 5,
no. 1
pp. 1 – 10
Abstract
Abstract Northern forests are an important carbon sink, but our understanding of the driving factors is limited due to discrepancies between dynamic global vegetation models (DGVMs) and atmospheric inversions. We show that DGVMs simulate a 50% lower sink (1.1 ± 0.5 PgC yr−1 over 2001–2021) across North America, Europe, Russia, and China compared to atmospheric inversions (2.2 ± 0.6 PgC yr−1). We explain why DGVMs underestimate the carbon sink by considering how they represent disturbance processes, specifically the overestimation of fire emissions, and the lack of robust forest demography resulting in lower forest regrowth rates than observed. We reconcile net sink estimates by using alternative disturbance-related fluxes. We estimate carbon uptake through forest regrowth by combining satellite-derived forest age and biomass maps. We calculate a regrowth flux of 1.1 ± 0.1 PgC yr−1, and combine this with satellite-derived estimates of fire emissions (0.4 ± 0.1 PgC yr−1), land-use change emissions from bookkeeping models (0.9 ± 0.2 PgC yr−1), and the DGVM-estimated sink from CO2 fertilisation, nitrogen deposition, and climate change (2.2 ± 0.9 PgC yr−1). The resulting ‘bottom-up’ net flux of 2.1 ± 0.9 PgC yr−1 agrees with atmospheric inversions. The reconciliation holds at regional scales, increasing confidence in our results.