Molecules (Sep 2023)

Ni/Mn-Complex-Tethered Tetranuclear Polyoxovanadates: Crystal Structure and Inhibitory Activity on Human Hepatocellular Carcinoma (HepG-2)

  • Fumei Shi,
  • Yilan Chen,
  • Chuanheng Dong,
  • Jiajia Wang,
  • Chunman Song,
  • Yalin Zhang,
  • Zhen Li,
  • Xianqiang Huang

DOI
https://doi.org/10.3390/molecules28196843
Journal volume & issue
Vol. 28, no. 19
p. 6843

Abstract

Read online

Polyoxometalates (POMs) exhibit unique structural characteristics and excellent physical and chemical properties, which have attracted significant attention from scholars in the fields of anticancer research and chemotherapy. Herein, we successfully synthesized and structurally characterized two novel polyoxovanadates (POVs), denoted as POVs-1 and POVs-2, where [M(1-vIM)4]2[VV4O12]·H2O (M: NiII and MnII, 1-vinylimidazole abbreviated as 1-vIM) serve as ligands. The two POVs are isomeric and consist of fundamental structural units, each comprising one [V4O12]4− cluster, two [M(1-vIM)4]2+ cations, and one water molecule. Subsequently, we evaluated the cell viability of human hepatocellular carcinoma (HepG-2) cells treated with the synthesized POVs using the MTT (3-[4,5-dimethylthiazol-2-yl]-2,5-diphenyl tetrazoliumbromide) assay. And the changes in cell nucleus morphology, mitochondrial membrane potential (Δψm), and reactive oxygen species levels in HepG-2 exposed to POVs were monitored using specific fluorescent staining techniques. Both hybrid POVs showed potent inhibitory activities, induing apoptosis in HepG-2 cells along with significant mitochondria dysfunction and a burst of reactive oxygen species. Notably, the inhibitory effects of POVs-2 were more pronounced than those of POVs-1, which is primarily attributed to the different transition metal ions present. These findings underscore the intricate relationship between the metal components, structural characteristics, and the observed antitumor activities in HepG-2 cells.

Keywords