Physical Review Accelerators and Beams (Dec 2021)

High repetition rate seeded free electron laser with an optical klystron in high-gain harmonic generation

  • Georgia Paraskaki,
  • Enrico Allaria,
  • Evgeny Schneidmiller,
  • Wolfgang Hillert

DOI
https://doi.org/10.1103/PhysRevAccelBeams.24.120701
Journal volume & issue
Vol. 24, no. 12
p. 120701

Abstract

Read online Read online

Many high-gain free electron lasers worldwide are planning to incorporate seeding setups into their day-to-day operation. These techniques provide both longitudinal and transverse coherence and extended control of the output free electron laser radiation spectral properties. However, the output wavelength and repetition rate strongly depend on the properties of the seed laser system. With the laser peak power required for successful seeded operation, it is currently not possible to increase their repetition rate to an extent that it matches the electron bunch repetition rate of superconducting accelerators. Here, we investigate the advantages of a modification of standard seeding setups, by combining the seeding with the so-called optical klystron. With this new seeding setup, it is possible to decrease the seed laser power requirements and therefore, seed laser systems can increase their repetition rate at the same wavelength. We show simulation results in a high-gain harmonic generation (HGHG) setup for a range of harmonics (8th to 15th) and we verify the reduction of seed laser power required with an Optical Klystron HGHG scheme. Finally, we comment on the stability of the proposed setup to jitter sources and to shot-to-shot fluctuations and compare to the standard HGHG scheme.