Measuring neuronal avalanches to inform brain-computer interfaces
Marie-Constance Corsi,
Pierpaolo Sorrentino,
Denis Schwartz,
Nathalie George,
Leonardo L. Gollo,
Sylvain Chevallier,
Laurent Hugueville,
Ari E. Kahn,
Sophie Dupont,
Danielle S. Bassett,
Viktor Jirsa,
Fabrizio De Vico Fallani
Affiliations
Marie-Constance Corsi
Sorbonne Université, Institut du cerveau - Paris Brain Institute - ICM, CNRS, Inserm, APHP, Hôpital de la Pitié Salpêtrière, Paris, France; Inria, Aramis Team, Paris, France; Corresponding author
Pierpaolo Sorrentino
Institut de Neuroscience des Systèmes, Aix-Marseille University, Inserm, Marseille, France; Corresponding author
Denis Schwartz
Institut du Cerveau - Paris Brain Institute, ICM, Inserm U 1127, CNRS UMR 7225, Sorbonne Université, CENIR, Centre MEG-EEG, Paris, France
Nathalie George
Sorbonne Université, Institut du cerveau - Paris Brain Institute - ICM, CNRS, Inserm, APHP, Hôpital de la Pitié Salpêtrière, Paris, France; Institut du Cerveau - Paris Brain Institute, ICM, Inserm U 1127, CNRS UMR 7225, Sorbonne Université, CENIR, Centre MEG-EEG, Paris, France
Leonardo L. Gollo
The Turner Institute for Brain and Mental Health, School of Psychological Sciences, and Monash Biomedical Imaging, Monash University, Victoria 3168, Australia
Sylvain Chevallier
LISN-CNRS, Université Paris-Saclay, Orsay, France
Laurent Hugueville
Institut de Neuroscience des Systèmes, Aix-Marseille University, Inserm, Marseille, France
Ari E. Kahn
Princeton Neuroscience Institute, Princeton University, Princeton, NJ 08540, USA
Sophie Dupont
Sorbonne Université, Institut du cerveau - Paris Brain Institute - ICM, CNRS, Inserm, APHP, Hôpital de la Pitié Salpêtrière, Paris, France
Danielle S. Bassett
University of Pennsylvania, Philadelphia, PA 19104, USA
Viktor Jirsa
Institut de Neuroscience des Systèmes, Aix-Marseille University, Inserm, Marseille, France
Fabrizio De Vico Fallani
Sorbonne Université, Institut du cerveau - Paris Brain Institute - ICM, CNRS, Inserm, APHP, Hôpital de la Pitié Salpêtrière, Paris, France; Inria, Aramis Team, Paris, France
Summary: Large-scale interactions among multiple brain regions manifest as bursts of activations called neuronal avalanches, which reconfigure according to the task at hand and, hence, might constitute natural candidates to design brain-computer interfaces (BCIs). To test this hypothesis, we used source-reconstructed magneto/electroencephalography during resting state and a motor imagery task performed within a BCI protocol. To track the probability that an avalanche would spread across any two regions, we built an avalanche transition matrix (ATM) and demonstrated that the edges whose transition probabilities significantly differed between conditions hinged selectively on premotor regions in all subjects. Furthermore, we showed that the topology of the ATMs allows task-decoding above the current gold standard. Hence, our results suggest that neuronal avalanches might capture interpretable differences between tasks that can be used to inform brain-computer interfaces.