Polymers (Dec 2023)
Infrastructure in the Age of Pandemics: Utilizing Polypropylene-Based Mask Waste for Durable and Sustainable Road Pavements
Abstract
When navigating the environmental exigencies precipitated by global pandemics, the escalation of mask waste presents a multifaceted dilemma. In this avant-garde research, we unveil a novel approach: harnessing the sterilized shredded mask residues (SMRs), predominantly composed of 100 wt. % polypropylene, as pioneering modifiers for asphalt. Distinct proportions of SMR (e.g., 3, 6, and 9 wt. %) were judiciously integrated with fresh–virgin base AP-5 asphalt and subjected to an extensive suite of state-of-the-art examinations, encompassing thin-layer chromatography-flame ionization detection (TLC-FID), Fourier-transform infrared spectroscopy (FT-IR), scanning electron microscopy (SEM), thermogravimetric analysis (TGA), differential scanning calorimetry (DSC), and specific rheological metrics. The TLC-FID diagnostic trajectories highlighted the nuanced rejuvenating influence of SMR on the binder, a facet reinforced by a pronounced elevation in the thermodynamic stability index (IC). The FT-IR spectra elucidated SMR’s preeminent role as a filler, negating notions of chemical reactivity. The TGA analyses unveiled an elevated thermal onset of degradation, signposting enhanced thermal resilience, whereas the DSC readings illuminated a superior thermal comportment at lower extremities. The SEM evaluations rendered a clearer panorama: there was heightened textural perturbation at escalated SMR incorporations, yet the 3 wt. % concoction showcased an optimal, coherent microtexture symbiosis with asphalt. The rheological scrutinies revealed a systematic trajectory: a diminishing penetration and ductility countered by ascending softening points and viscosity metrics. The coup de maître stemmed from the DSR analyses, unequivocally validating SMR’s unparalleled prowess in curtailing rutting distress. This seminal inquiry not only posits a blueprint for refined pavement longevity but also champions a sustainable countermeasure to pandemic-propelled waste, epitomizing the confluence of environmental prudence an d infrastructural fortitude.
Keywords