Symmetry (Sep 2021)

Longitudinal Changes in Running Gait Asymmetries and Their Relationship to Personal Record Race Times in Collegiate Cross Country Runners

  • Mikel R. Stiffler-Joachim,
  • Stephanie A. Kliethermes,
  • Jack A. Martin,
  • Claire S. Tanaka,
  • Ramsey Benkert,
  • Bryan C. Heiderscheit

DOI
https://doi.org/10.3390/sym13091729
Journal volume & issue
Vol. 13, no. 9
p. 1729

Abstract

Read online

Minimizing between-limb asymmetries during running is often a goal of training, as increased asymmetries are related to decreased efficiency and increased energy expenditure. However, it is unknown if asymmetries change with increased running exposure or are related to actual race performance. The purpose of this study was to determine (1) if pre-season asymmetries changed year-to-year among collegiate cross country runners, and (2) if these asymmetries were associated with within-season personal records (PRs). Pre-season biomechanical test results and race performance data were analyzed for 54 unique runners (28 female) across six seasons, totaling 152 assessments (age: 19.1 (0.9) years, height: 1.71 (0.10) m, weight: 61.7 (7.7) kg (values = mean [standard deviation])). Biomechanical asymmetries included ground reaction forces; ground contact time; base of gait; foot inclination angle; and peak hip flexion, hip extension, hip adduction, pelvic drop, knee flexion, and ankle dorsiflexion. Year of collegiate eligibility was used to quantify training exposure. Asymmetries during running did not change across years of eligibility (p ≥ 0.12), except propulsive impulse, which decreased over time (p = 0.03). PR times were faster with decreased propulsive impulse asymmetry and increased AVLR and peak ankle dorsiflexion asymmetries. This is the first study to assess longitudinal asymmetries over time and provide potential targets for interventions aimed at modifying asymmetries to improve performance.

Keywords