Remote Sensing (Feb 2025)
Fine Estimation of Water Quality in the Yangtze River Basin Based on a Geographically Weighted Random Forest Regression Model
Abstract
Water quality evaluation usually relies on limited state-controlled monitoring data, making it challenging to fully capture variations across an entire basin over time and space. The fine estimation of water quality in a spatial context presents a promising solution to this issue; however, traditional analyses often ignore spatial non-stationarity between variables. To solve the above-mentioned problems in water quality mapping research, we took the Yangtze River as our study subject and attempted to use a geographically weighted random forest regression (GWRFR) model to couple massive station observation data and auxiliary data to carry out a fine estimation of water quality. Specifically, we first utilized state-controlled sections’ water quality monitoring data as input for the GWRFR model to train and map six water quality indicators at a 30 m spatial resolution. We then assessed various geographical and environmental factors contributing to water quality and identified spatial differences. Our results show accurate predictions for all indicators: ammonia nitrogen (NH3-N) had the lowest accuracy (R2 = 0.61, RMSE = 0.13), and total nitrogen (TN) had the highest (R2 = 0.74, RMSE = 0.48). The mapping results reveal total nitrogen as the primary pollutant in the Yangtze River basin. Chemical oxygen demand and the permanganate index were mainly influenced by natural factors, while total nitrogen and total phosphorus were impacted by human activities. The spatial distribution of critical influencing factors shows significant clustering. Overall, this study demonstrates the fine spatial distribution of water quality and provides insights into the influencing factors that are crucial for the comprehensive management of water environments.
Keywords