Applied Sciences (Aug 2021)

Overview of an Experimental Program for Development of Yield Surfaces Tracing Method

  • Jan Štefan,
  • Slavomír Parma,
  • René Marek,
  • Jiří Plešek,
  • Constantin Ciocanel,
  • Heidi Feigenbaum

DOI
https://doi.org/10.3390/app11167606
Journal volume & issue
Vol. 11, no. 16
p. 7606

Abstract

Read online

This paper develops an experimental technique to evaluate the initial yield surfaces of metallic materials, as well as to study their evolution during plastic flow. The experimental tracing of yield surfaces is necessary for deriving and calibrating more robust phenomenological models of directional distortional hardening. Such models can be used to characterize the behavior of structures experiencing complicated and demanding loading modes, such as multiaxial ratcheting. The experimental technique developed in this work uses thin-walled tubular specimens, along with a servo-hydraulic machine, under various modes of tension/compression and torque. Identification of the onset of plastic flow is based on a small proof equivalent plastic strain evaluated from the outputs of a contact biaxial extensometer firmly attached to a specimen surface. This allows for evaluation of both the initial yield surface, as well as theevolved yield surface after a plastic prestrain. Throughout a test, continuous and fully automatized evaluation of elastic moduli and proof plastic strain is assured through algorithms written in C# language. The current technique is shown to provide promising results to effectively capture the yield surfaces of conventional metallic materials.

Keywords