Nano-Micro Letters (Sep 2019)

Boosting Sodium Storage of Fe1−x S/MoS2 Composite via Heterointerface Engineering

  • Song Chen,
  • Shaozhuan Huang,
  • Junping Hu,
  • Shuang Fan,
  • Yang Shang,
  • Mei Er Pam,
  • Xiaoxia Li,
  • Ye Wang,
  • Tingting Xu,
  • Yumeng Shi,
  • Hui Ying Yang

DOI
https://doi.org/10.1007/s40820-019-0311-z
Journal volume & issue
Vol. 11, no. 1
pp. 1 – 14

Abstract

Read online

Abstract Improving the cycling stability of metal sulfide-based anode materials at high rate is of great significance for advanced sodium ion batteries. However, the sluggish reaction kinetics is a big obstacle for the development of high-performance sodium storage electrodes. Herein, we have rationally engineered the heterointerface by designing the Fe1−x S/MoS2 heterostructure with abundant “ion reservoir” to endow the electrode with excellent cycling stability and rate capability, which is proved by a series of in and ex situ electrochemical investigations. Density functional theory calculations further reveal that the heterointerface greatly decreases sodium ion diffusion barrier and facilitates charge-transfer kinetics. Our present findings not only provide a deep analysis on the correlation between the structure and performance, but also draw inspiration for rational heterointerface engineering toward the next-generation high-performance energy storage devices.

Keywords