Applied Sciences (Aug 2020)
An eLORETA Longitudinal Analysis of Resting State EEG Rhythms in Alzheimer’s Disease
Abstract
Alzheimer’s disease (AD) is a degenerative brain disorder which is the most common cause of dementia. As there is no cure for AD, an early diagnosis is essential to slow down the progression of the disease with a proper pharmacological treatment. Electroencephalography (EEG) represents a valid tool for studying AD. EEG signals of AD patients are characterized by a “slowing”, meaning the power increases in low frequencies (delta and theta) and decreases in higher frequency (alpha and beta), compared to normal elderly. The purpose of our study is the computation of the power current density in eight patients, who were diagnosed with MCI at time T0 and mild AD at time T1 (four months later), starting from the brain active source reconstruction. The novelty is that we employed the eLORETA algorithm, unlike the previous studies which used the old version of the algorithm named LORETA. It is also the first longitudinal study which considers such a short time period to explore the evolution of the disease. Five patients out of eight showed an increasing power in delta and theta bands. Seven patients exhibited a lower activation in alpha 1 and beta 2 bands. Finally, six patients revealed a decreased power in alpha 2 and beta 1 bands. These findings are consistent with those reported in literature. On the other hand, the discrepancy of some outcome could be related to a not yet severe stage of the disease. In our opinion, this study could represent a good starting point for more detailed future investigation.
Keywords