IET Science, Measurement & Technology (Sep 2021)

Sensing accuracy enhancement of long‐range distributed fibre‐optic temperature sensor using hybrid algorithm

  • Himansu Shekhar Pradhan

DOI
https://doi.org/10.1049/smt2.12058
Journal volume & issue
Vol. 15, no. 7
pp. 569 – 577

Abstract

Read online

Abstract This paper presents a long‐range distributed fibre‐optic temperature sensor with high sensing accuracy to monitor temperature using Brillouin scattering mechanism. Fourier deconvolution, Fourier wavelet regularised deconvolution, dichotomised singular value decomposition and hybrid algorithms were employed to measure the temperature of proposed sensor. Optical time domain reflectometry technique is used to extract the temperature profile for 70, 60 and 50 km sensing ranges. The improvement of temperature accuracy using hybrid algorithm is achieved for 70 km sensing distance. In order to extract temperature information, the numerical simulation process has been incorporated in the proposed long‐range sensing system. Moreover, the temperature accuracy of the proposed system is obtained using Fourier deconvolution, Fourier wavelet regularised deconvolution, dichotomised singular value decomposition and hybrid algorithms for 70, 60 and 50 km sensing ranges. The simulation results show that the temperature accuracy is observed as 4.8°K using hybrid algorithm compared to Fourier deconvolution algorithm that shows temperature accuracy as 14°K at 70 km. In the proposed sensor, a spatial resolution of 20 m is observed for a sensing range of 70 km using hybrid algorithm. In addition, the denoising competence of the proposed hybrid algorithm is validated using 50 km optical time domain reflectometry backscattered trace observed experimentally. Further, a peak dynamic range improvement of optical time domain reflectometry backscattered trace as 3.91 dB is observed using hybrid algorithm.

Keywords