Minerals (Feb 2024)

Fractal Evolution Characteristics of Isolation Layers in a Submarine Gold Mine: A Case Study

  • Yin Chen,
  • Zijun Li,
  • Weixing Lin,
  • Yan He,
  • Guoqiang Wang,
  • Renze Ou,
  • Qi Liu

DOI
https://doi.org/10.3390/min14020205
Journal volume & issue
Vol. 14, no. 2
p. 205

Abstract

Read online

The establishment of an isolation layer in submarine mining has been a persistent challenge. In the context of this research, we conducted a similarity simulation test to preliminarily assess the interaction between the thickness and extent of the isolation layer. Subsequently, we introduce an innovative approach that integrates fractal theory and the Bonded Block Model (BBM) to simulate undersea isolation layer mining. The validation of this method relies on on-site borehole scanning and displacement monitoring, which depict the intricate fractal evolution of fractures and predict the optimal thickness of the isolation layer. Our findings affirm the robustness and validity of this method. Evaluation of the fractal dimensions of fractures reveals that a critical threshold of 1.7 is essential to prevent structural failure of the isolation layer, while a limit of 1.5 is necessary to avoid significant water ingress. Remarkably, the correlation dimension of the settlement time series closely aligns with the fractal dimension of the fractures, underscoring the feasibility of ensuring the safety of isolation layer mining through real-time settlement monitoring.

Keywords