EPJ Web of Conferences (Jan 2021)

AN IRSN CONTRIBUTION TO THE UAM PROJECT: THERMAL-HYDRAULIC AND NEUTRONIC UNCERTAINTIES PROPAGATION IN A ROD EJECTION, FIRST RESULTS

  • Sargeni A.,
  • Ivanov E.

DOI
https://doi.org/10.1051/epjconf/202124707003
Journal volume & issue
Vol. 247
p. 07003

Abstract

Read online

The paper presents our first results of the exercise III-I-2c from the OECD-NEA UAM-LWR benchmark intended to an elaboration of the methodology of uncertainty propagation. The considered case studied a full PWR core behavior in fast (~0.1 sec) rod ejection transient. According to the benchmark, the core represented a Hot Zero Power state. Authors used brute-force sampling propagating nuclear data and thermo-fluid uncertainties using 3D computational IRSN chain HEMERA. It couples the reactor physics code CRONOS and thermal-hydraulic core code FLICA4. The nuclear data uncertainties were represented in a form of cross sections standard deviations (in percentage of the mean cross sections values) supplied by the UAM team. In addition to the original benchmark, the study includes a case with an increased power peak by supplementary rod ejection, i.e. with higher reactivity. Both the results are similar to what we obtained in the mini-core rod ejection: the power standard deviation follows, in percentage of the mean power, the mean power curve. We split the variance with a direct calculation: once the cross sections are modified and the thermal-hydraulics inputs are kept constant, another time the contrary. The results show that uncertainties dues to nuclear data dominate over ones due to the thermal-flow area. Furthermore, the major contributors in peak-of-power variance lie in a fast group of cross sections.

Keywords