Journal of Marine Science and Engineering (Aug 2023)

Weakening of the Geostrophic Component of the Gulf Stream: A Positive Feedback Loop on the Melting of the Arctic Ice Sheet

  • Jean-Louis Pinault

DOI
https://doi.org/10.3390/jmse11091689
Journal volume & issue
Vol. 11, no. 9
p. 1689

Abstract

Read online

The North Atlantic gyre experiences both a significant temperature rise at high latitudes and a considerable weakening of the geostrophic component of the Gulf Stream, which is reflected by the 64-year fundamental gyral Rossby wave (GRW). This singular behavior compared to the South Atlantic and South Indian Ocean gyres highlights a feedback loop of Arctic ice sheet melting on mid-latitude Atlantic Ocean temperature. The warming of the northern oceanic gyre at high latitudes due to the retreat of Arctic ice sheet via the Labrador Current decreases the thermal gradient between the high and low latitudes of the north Atlantic gyre. This results in a weakening of the geostrophic forces at the basin scale and a reduction in the amplitude of the GRWs. Reducing the amplitude of the variation of the upward and downward movement of the pycnocline modifies air–sea interactions, weakening vertical mixing as well as the evaporation processes and the departure of latent heat when the pycnocline rises. The resulting thermal anomaly stretching along the Gulf Stream from where it leaves the American continent is partly transferred to the Arctic sea ice via the drift current and thermohaline circulation, which contributes to the retreat of the ice sheet, and the closing of the feedback loop. The 64-year-period GRW should disappear around 2050 if its damping continues linearly, favoring an increasingly rapid warming of the ocean at mid-latitudes. These interactions are less acute in the southern hemisphere due to the circumpolar current.

Keywords