Remote Sensing (Jul 2022)
Integrate the Canopy SIF and Its Derived Structural and Physiological Components for Wheat Stripe Rust Stress Monitoring
Abstract
Solar-induced chlorophyll fluorescence (SIF) has great advantages in the remote sensing detection of crop stress. However, under stripe rust stress, the effects of canopy structure and leaf physiology on the variations in canopy SIF are unclear, and these influencing factors are entangled during the development of disease, resulting in an unclear coupling relationship between SIFcanopy and the severity level (SL) of disease, which affects the remote sensing detection accuracy of wheat stripe rust. In this study, the observed canopy SIF was decomposed into NIRVP, which can characterize the canopy structure, and SIFtot, which can sensitively reflect the physiological status of crops. Additionally, the main factors driving the variations in canopy SIF under different disease severities were analyzed, and the response characteristics of SIFcanopy, NIRVP, and SIFtot to SL under stripe rust stress were studied. The results showed that when the severity level (SL) of disease was lower than 20%, NIRVP was more sensitive to variation in SIFcanopy than SIFtot, and the correlation between SIFtot and SL was 6.6% higher than that of SIFcanopy. Using the decomposed SIFtot component allows one to detect the stress state of plants before variations in vegetation canopy structure and leaf area index and can realize the early diagnosis of crop diseases. When the severity level (SL) of disease was in the state of moderate incidence (20% canopy was affected by both NIRVP and SIFtot, and the detection accuracy of SIFcanopy for wheat stripe rust was better than that of the NIRVP and SIFtot components. When the severity level (SL) of disease reached a severe level (SL > 45%), SIFtot was more sensitive to the variation in SIFcanopy, and NIRVP reached a highly significant level with SL, which could better realize the remote sensing detection of wheat stripe rust disease severity. The research results showed that analyzing variations in SIFcanopy by using the decomposed canopy structure and physiological response signals can effectively capture additional information about plant physiology, detect crop pathological variations caused by disease stress earlier and more accurately, and promote crop disease monitoring and research progress.
Keywords