Applied Sciences (Jul 2023)
An Improved Multi-Scale Feature Fusion for Skin Lesion Segmentation
Abstract
Accurate segmentation of skin lesions is still a challenging task for automatic diagnostic systems because of the significant shape variations and blurred boundaries of the lesions. This paper proposes a multi-scale convolutional neural network, REDAUNet, based on UNet3+ to enhance network performance for practical applications in skin segmentation. First, the network employs a new encoder module composed of four feature extraction layers through two cross-residual (CR) units. This configuration allows the module to extract deep semantic information while avoiding gradient vanishing problems. Subsequently, a lightweight and efficient channel attention (ECA) module is introduced during the encoder’s feature extraction stage. The attention module assigns suitable weights to channels through attention learning and effectively captures inter-channel interaction information. Finally, the densely connected atrous spatial pyramid pooling module (DenseASPP) module is inserted between the encoder and decoder paths. This module integrates dense connections and ASPP, as well as multi-scale information fusion, to recognize lesions of varying sizes. The experimental studies in this paper were constructed on two public skin lesion datasets, namely, ISIC-2018 and ISIC-2017. The experimental results show that our model is more accurate in segmenting lesions of different shapes and achieves state-of-the-art performance in segmentation. In comparison to UNet3+, the proposed REDAUNet model shows improvements of 2.01%, 4.33%, and 2.68% in Dice, Spec, and mIoU metrics, respectively. These results suggest that REDAUNet is well-suited for skin lesion segmentation and can be effectively employed in computer-aided systems.
Keywords