Vestnik KRAUNC: Fiziko-Matematičeskie Nauki (Dec 2022)

Решение краевой задачи для обобщенного уравнения Лапласа с дробной производной

  • Масаева, О.Х.

DOI
https://doi.org/10.26117/2079-6641-2022-40-3-53-63
Journal volume & issue
Vol. 2022, no. 3
pp. 53 – 63

Abstract

Read online

В работе исследована краевая задача Дирихле в верхней полуплоскости для уравнения в частных производных второго порядка, содержащего композицию операторов дробного дифференцирования Римана-Лиувилля по одной из двух независимых переменных. Рассматриваемое уравнение при целом значении порядка дробного дифференцирования переходит в уравнение Лапласа от двух независимых переменных. Получено представление решения исследуемой задачи в явном виде (в терминах функции типа Миттаг-Леффлера) методом интегрального преобразования Фурье. Найдены асимптотические оценки частного решения и его производных. Доказаны теоремы о существовании и единственности регулярного решения. Существование решения доказано в классе непрерывных функций с весом в замкнутой полуплоскости. Единственность решения доказана в классе непрерывно дифференцируемых функций по пространственной переменной и имеющих соответствующую непрерывную дробную производную с весом по временной переменной в замкнутой полуплоскости.

Keywords