Open Chemistry (Nov 2022)

Antioxidant, antidiabetic, and anticholinesterase potential of Chenopodium murale L. extracts using in vitro and in vivo approaches

  • Ahmed Zubaida Rasheed,
  • Uddin Zaheer,
  • Shah Syed Wadood Ali,
  • Zahoor Muhammad,
  • Alotaibi Amal,
  • Shoaib Mohammad,
  • Ghias Mehreen,
  • Bari Wasim Ul

DOI
https://doi.org/10.1515/chem-2022-0232
Journal volume & issue
Vol. 20, no. 1
pp. 1171 – 1186

Abstract

Read online

In this study, Chenopodium murale Linn. extracts have been evaluated for its in vitro antioxidant, enzyme inhibition, and in vivo neuropharmacological properties in streptozotocin (STZ)-induced memory impairment in rat model. First, the plant was subjected to extraction and fractionation, then quantitative phytochemical analysis was performed to estimate the major phytochemical groups in the extract where high amounts of phenolics and saponins were detected in crude and chloroform extract. The highest total phenolic contents, total flavonoid contents, and total tannin content were also recorded in crude extract and chloroform fraction. The in vitro antioxidant potential of chloroform fraction was high with IC50 value of 41.78 and 67.33 μg/mL against DPPH and ABTS radicals, respectively, followed by ethyl acetate fraction. The chloroform fraction (ChMu-Chf) also exhibited potent activity against glucosidase with IC50 of 89.72 ± 0.88 μg/mL followed by ethyl acetate extract (ChMu-Et; IC50 of 140.20 ± 0.98 μg/mL). ChMu-Chf again exhibited potent activity against acetylcholinesterase (AChE) with IC50 of 68.91 ± 0.87 μg/mL followed by ChMu-Et with IC50 of 78.57 ± 0.95 μg/mL. In vivo memory impairment was assessed using the novel object discrimination task, Y-maze, and passive avoidance task. Ex vivo antioxidant enzyme activities and oxidative stress markers like catalase, superoxide dismutase (SOD), malondialdehyde, and glutathione were quantified, and the AChE activity was also determined in the rat brain. No significant differences were observed amongst all the groups treated with crude, chloroform, and ethyl acetate in comparison with positive control donepezil group in connection to initial latency; whereas, the STZ diabetic group displayed a significant fall in recall and retention capability. The blood glucose level was more potently lowered by chloroform extract. The crude extract also increased the SOD level significantly in the brain of the treated rat by 8.01 ± 0.51 and 8.19 ± 0.39 units/mg at 100 and 200 mg/kg body weight (P < 0.01, n = 6), whereas the chloroform extract increased the SOD level to 9.41 ± 0.40 and 9.72 ± 0.51 units/mg, respectively, at 75 and 150 mg/kg body weight as compared to STZ group. The acetylcholine level was also elevated to greater extent by chloroform fraction that might contain a potential inhibitor of acetylcholinesterase. Treatment with C. murale ameliorated cognitive dysfunction in behavioral study, and provided significant defense from neuronal oxidative stress in the brain of the STZ-induced diabetic rats. Thus C. murale Linn. could be an inspiring plant resource that needs to be further investigated for isolation of potential compounds in pure form and their evaluation as a potent neuropharmacological drug.

Keywords