Scientific Reports (May 2024)
rESWT promoted angiogenesis via Bach1/Wnt/β-catenin signaling pathway
Abstract
Abstract Previous reports have established that rESWT fosters angiogenesis, yet the mechanism by which rESWT promotes cerebral angiogenesis remains elusive. rESWT stimulated HUVECs proliferation as evidenced by the CCK-8 test, with an optimal dosage of 2.0 Bar, 200 impulses, and 2 Hz. The tube formation assay of HUVECs revealed that tube formation peaked at 36 h post-rESWT treatment, concurrent with the lowest expression level of Bach1, as detected by both Western blot and immunofluorescence. The expression level of Wnt3a, β-catenin, and VEGF also peaked at 36 h. A Bach1 overexpression plasmid was transfected into HUVECs, resulting in a decreased expression level of Wnt3a, β-catenin, and VEGF. Upon treatment with rESWT, the down-regulation of Wnt3a, β-catenin, and VEGF expression in the transfected cells was reversed. The Wnt/β-catenin inhibitor DKK-1 was utilized to suppress Wnt3a and β-catenin expression, which led to a concurrent decrease in VEGF expression. However, rESWT treatment could restore the expression of these three proteins, even in the presence of DKK-1. Moreover, in the established OGD model, it was observed that rESWT could inhibit the overexpression of Bach1 and enhance VEGF and VEGFR-2 expression under the OGD environment.
Keywords