BMC Infectious Diseases (Nov 2024)
Dynamic modelling of improved diagnostic testing for drug-resistant tuberculosis in high burden settings
Abstract
Abstract Background Limited diagnostic testing for drug-resistant TB (DR-TB) may lead to high rates of misdiagnosis and undertreatment. Current diagnostic tests focus only on detection of rifampicin-resistant TB (RR-TB). This study aims to determine the impact of improved diagnostic testing for a wider range of drug resistance on DR-TB outcomes in high-burden TB settings, using the Philippines and Thailand as case studies. Methods A dynamic compartmental model was designed to simulate population level TB transmission, accounting for acquired drug resistance from treatment failure of drug susceptible TB. Three scenarios were analyzed: (1) Use of GeneXpert MTB/RIF on all presumptive TB cases (Status Quo); (2) GeneXpert MTB/RIF + GeneXpert XDR, (3) GeneXpert MTB/RIF + targeted Next Generation Sequencing (tNGS). Scenarios were modelled over a 10-year period, from 2025 to 2034. Results Compared to the status quo, Scenario 2 results in a fourfold increase in annual DR-TB cases diagnosed in the Philippines and a fivefold increase in Thailand. DR-TB treatment failure decreases by 20% in the Philippines and 23% in Thailand. Scenario 3 further increases DR-TB case detection, reducing DR-TB treatment failure by 26% in the Philippines and 29% in Thailand. Reductions in DR-TB incidence and mortality ranged from 3 to 6%. Conclusion The use of GeneXpert XDR or tNGS as an additional diagnostic test for DR-TB significantly improves DR-TB case detection and reduces treatment failure, supporting their consideration for use in high burden settings. These findings highlight the importance of detecting a wider range of TB resistance in addition to RR-TB, the potential impact these improved diagnostic tests can have on DR-TB outcomes, and the need for additional research on cost-effectiveness of these interventions.
Keywords