Sensors (May 2023)
WARNING: A Wearable Inertial-Based Sensor Integrated with a Support Vector Machine Algorithm for the Identification of Faults during Race Walking
Abstract
Due to subjectivity in refereeing, the results of race walking are often questioned. To overcome this limitation, artificial-intelligence-based technologies have demonstrated their potential. The paper aims at presenting WARNING, an inertial-based wearable sensor integrated with a support vector machine algorithm to automatically identify race-walking faults. Two WARNING sensors were used to gather the 3D linear acceleration related to the shanks of ten expert race-walkers. Participants were asked to perform a race circuit following three race-walking conditions: legal, illegal with loss-of-contact and illegal with knee-bent. Thirteen machine learning algorithms, belonging to the decision tree, support vector machine and k-nearest neighbor categories, were evaluated. An inter-athlete training procedure was applied. Algorithm performance was evaluated in terms of overall accuracy, F1 score and G-index, as well as by computing the prediction speed. The quadratic support vector was confirmed to be the best-performing classifier, achieving an accuracy above 90% with a prediction speed of 29,000 observations/s when considering data from both shanks. A significant reduction of the performance was assessed when considering only one lower limb side. The outcomes allow us to affirm the potential of WARNING to be used as a referee assistant in race-walking competitions and during training sessions.
Keywords