Remote Sensing (May 2023)

High-Resolution SAR Imaging with Azimuth Missing Data Based on Sub-Echo Segmentation and Reconstruction

  • Nan Jiang,
  • Jiahua Zhu,
  • Dong Feng,
  • Zhuang Xie,
  • Jian Wang,
  • Xiaotao Huang

DOI
https://doi.org/10.3390/rs15092428
Journal volume & issue
Vol. 15, no. 9
p. 2428

Abstract

Read online

Due to the substantial electromagnetic interference, radar interruptions, and other factors, the SAR system may fail to receive valid data in some azimuth areas. This phenomenon is known as Azimuth Missing Data (AMD). If classical SAR imaging algorithms are performed directly using AMD echo, the imaging results may be defocused or even display false targets, which seriously affects the accuracy of the image. Thus, we proposed a Sub-echo Segmentation and Reconstruction Azimuth Missing Data SAR Imaging Algorithm (SSR-AMDIA) to solve the problem of incomplete echo SAR imaging in this article. Instead of using the motion compensation step of the Polar Format algorithm (PFA) to recover the full echo from the AMD echo, the proposed SSR-AMDIA eliminates the effect of the planar approximation in PFA and expands the maximum depth of focus (DOF). The raw AMD echo was first subjected to range compression and Range Cell Migration Correction (RCMC), after which the AMD-RCMC echo was divided along the range direction. Then, we constructed a series of phase compensation functions based on the sub-segment AMD-RCMC echoes to guarantee the perfect recovery of the full RCMC echoes corresponding to the sub-scenes. Finally, we combined them to obtain the complete RCMC echo, and an excellent focused imaging result was then obtained via azimuth compression. Simulation and experimental data verified the effectiveness of the proposed algorithm. Furthermore, we derived the mathematical expressions for the two-dimensional maximum DOFs of the proposed algorithm. In contrast to the State-Of-the-Art (SOA) AMDIA, the SSR-AMDIA can obtain a superior imaging performance in a larger imaging scope under the conditions of most AMD cases.

Keywords