Cellular & Molecular Biology Letters (Apr 2019)
MiR-200c downregulates HIF-1α and inhibits migration of lung cancer cells
Abstract
Abstract Background Hypoxia-inducible factor-1α (HIF-1α) is a transcription factor with a pivotal role in physiological and pathological responses to hypoxia. While HIF-1α is known to be involved in hypoxia-induced upregulation of microRNA (miRNA) expression, HIF-1α is also targeted by miRNAs. In this study, miRNAs targeting HIF-1α were identified and their effects on its expression and downstream target genes under hypoxic conditions were investigated. Cell migration under the same conditions was also assessed. Methods microRNAs that target HIF-1α were screened using 3′-untranslated region luciferase (3′-UTR-luciferase) reporter assays. The expression levels of HIF-1α and its downstream target genes after transfection with miRNA were assessed using quantitative RT-PCR and western blot analyses. The effect of the miRNAs on the transcriptional activity of HIF-1α was determined using hypoxia-responsive element luciferase (HRE-luciferase) assays. Cell migration under hypoxia was examined using the wound-healing assay. Results Several of the 19 screened miRNAs considerably decreased the luciferase activity. Transfection with miR-200c had substantial impact on the expression level and transcription activity of HIF-1α. The mRNA level of HIF-1α downstream genes decreased in response to miR-200c overexpression. MiR-200c inhibited cell migration in normoxia and, to a greater extent, in hypoxia. These effects were partly reversed by HIF-1α expression under hypoxic conditions. Conclusion miR-200c negatively affects hypoxia-induced responses by downregulating HIF-1α, a key regulator of hypoxia. Therefore, overexpression of miR-200c might have therapeutic potential as an anticancer agent that inhibits tumor hypoxia.
Keywords