Applied Sciences (Nov 2015)
Study on Sintering System of Calcium Barium Sulphoaluminate by XRD Quantitative Analysis
Abstract
Calcium barium sulphoaluminate (CBSA), derived from calcium sulphoaluminate (CSA), has excellent cementitious properties. In this study, the sintering system of CBSA with a theoretical stoichiometric Ca3BaAl6SO16 was investigated. Rietveld refinement was performed using TOPAS 4.2 software to quantitatively calculate the content of CBSA and the actual ionic site occupancy of Ba2+. The results indicate that the content of Ca4−xBaxAl6SO16 increases with increasing sintering temperature in the 1200–1400 °C ranges. When sintered at 1400 °C for 180 min, the content of CBSA reaches 88.4%. However, CBSA begins to decompose at 1440 °C, after which the content decreases. The replacement rate of Ba2+ was also enlarged by increasing sintering temperature and prolonged sintering time. Sintering at 1400 °C for 180 min is considered as the optimum when replacement rate of Ba2+ and the content of CBSA were taken into account. Ca3.2Ba0.8Al6SO16 with a content of 88.4% was synthesized.
Keywords