Journal of Industrial Engineering and Management (Jan 2015)

Developing an agent-based model on how different individuals solve complex problems

  • Ipek Bozkurt

DOI
https://doi.org/10.3926/jiem.1197
Journal volume & issue
Vol. 8, no. 1
pp. 233 – 266

Abstract

Read online

Purpose: Research that focuses on the emotional, mental, behavioral and cognitive capabilities of individuals has been abundant within disciplines such as psychology, sociology, and anthropology, among others. However, when facing complex problems, a new perspective to understand individuals is necessary. The main purpose of this paper is to develop an agent-based model and simulation to gain understanding on the decision-making and problem-solving abilities of individuals. Design/Methodology/approach: The micro-level analysis modeling and simulation paradigm Agent-Based Modeling Through the use of Agent-Based Modeling, insight is gained on how different individuals with different profiles deal with complex problems. Using previous literature from different bodies of knowledge, established theories and certain assumptions as input parameters, a model is built and executed through a computer simulation. Findings: The results indicate that individuals with certain profiles have better capabilities to deal with complex problems. Moderate profiles could solve the entire complex problem, whereas profiles within extreme conditions could not. This indicates that having a strong predisposition is not the ideal way when approaching complex problems, and there should always be a component from the other perspective. The probability that an individual may use these capabilities provided by the opposite predisposition provides to be a useful option. Originality/value: The originality of the present research stems from how individuals are profiled, and the model and simulation that is built to understand how they solve complex problems. The development of the agent-based model adds value to the existing body of knowledge within both social sciences, and modeling and simulation.

Keywords