Biochemistry and Biophysics Reports (Jul 2021)
Effect of magnesium sulfate in oxidized lipid bilayers properties by using molecular dynamics
Abstract
Magnesium sulfate (MgSO4) has been used as a protector agent for many diseases related to oxidative stress. The effect of MgSO4 on the oxidized lipid bilayer has not yet been studied using molecular dynamics calculations. In this work, the effects of oxidation were evaluated by using a POPC membrane model at different concentrations of its aldehyde (-CHO) and hydroperoxide (-OOH) derivatives with and without MgSO4. Several quantitative and qualitative properties were evaluated, such as membrane thickness, area per lipid, area compressibility modulus, snapshots after simulation finish, density distributions, time evolutions of oxidized group positions, and radial distributions of oxidized group concerning Mg. Results indicate that in the absence of MgSO4 the mobility of oxidized groups, particularly –CHO, toward the surface interface is high. At a low oxidation level of the bilayer there is an increase in the compressibility modulus as compared to the unoxidized bilayer. MgSO4, at a low oxidation level, tends to lessen the oxidation effects by lowering the dispersion in the distribution of oxidized species toward the membrane surface and the water region. However, MgSO4 does not change the trends of decreasing membrane thickness and area compressibility modulus and increasing area per lipid upon oxidation. In this regard, MgSO4 diminishes the electrostatic long-distance attractive interactions between the oxidized groups and the charged headgroups of the interface, owing to the Mg+2 and SO4-2 screening effects and an electrostatic stabilization of the headgroups, preventing the pore formation, which is well-known to occur in oxidized membranes.