The Journal of Clinical Hypertension (Apr 2021)

High‐phosphorus diet controlled for sodium elevates blood pressure in healthy adults via volume expansion

  • Jia‐ying Zhang,
  • Huai‐zhou You,
  • Meng‐jing Wang,
  • Qian Zhang,
  • Xin‐yu Dong,
  • Jing‐fang Liu,
  • Jing Chen

DOI
https://doi.org/10.1111/jch.14182
Journal volume & issue
Vol. 23, no. 4
pp. 849 – 859

Abstract

Read online

Abstract Whether increasing exposure to dietary phosphorus can lead to adverse clinical outcomes in healthy people is not clear. In this open‐label prospective cross‐over study, we are to explore the impact of various dietary phosphorus intake on mineral, sodium metabolisms and blood pressure in young healthy adults. There were 3 separate study periods of 5 days, each with a 5 days washout period between different diets interventions. Six young healthy male volunteers with normal nutrition status were recruited in Phase I Clinical Research Center and sequentially exposed to the following diets: (a) normal‐phosphorus diet (NPD): 1500 mg/d, (b) low‐phosphorus diet (LPD): 500 mg/d, (c) high‐phosphorus diet (HPD): 2300 mg/d. HPD induced a significant rise in daily average serum phosphate (1.47 ± 0.02 mmol/L [4.56 ± 0.06 mg/dl]) compared to NPD (1.34 ± 0.02 mmol/L [4.15 ± 0.06 mg/dL]) and LPD (1.17 ± 0.02 mmol/L [3.63 ± 0.06 mg/dL]) (p < .05). Daily average levels of serum parathyroid hormone and fibroblast growth factor 23 in HPD were significantly higher, and serum 1,25(OH)2D3 was remarkably lower than those in LPD. HPD induced a significant decrease in daily average serum aldosterone and an increase in daily average atrial natriuretic peptide level compared to LPD. The 24‐hour urine volume in HPD subjects was less than that in LPD subjects. HPD significantly increased daily average systolic blood pressure by 6.02 ± 1.24 mm Hg compared to NPD and by 8.58 ± 1.24mm Hg compared to LPD (p < .05). Our study provides the first evidence that 5‐day high‐phosphorus diet can induce elevation in SBP in young healthy adults, which may due to volume expansion.

Keywords