PLoS ONE (Jan 2013)

Joint effects of asymmetric payoff and reciprocity mechanisms on collective cooperation in water sharing interactions: a game theoretic perspective.

  • Cho Nam Ng,
  • Raymond Yu Wang,
  • Tianjie Zhao

DOI
https://doi.org/10.1371/journal.pone.0073793
Journal volume & issue
Vol. 8, no. 8
p. e73793

Abstract

Read online

Common-pool resource (CPR) dilemmas distinguish themselves from general public good problems by encompassing both social and physical features. This paper examines how a physical mechanism, namely asymmetric payoff; and a social mechanism, reciprocity; simultaneously affect collective cooperation in theoretical water sharing interactions. We present an iterative N-person game theoretic model to investigate the joint effects of these two mechanisms in a linear fully connected river system under three information assumptions. From a simple evolutionary perspective, this paper quantitatively addresses the conditions for Nash Equilibrium in which collective cooperation might be established. The results suggest that direct reciprocity increases every actor's motivation to contribute to the collective good of the river system. Meanwhile, various upstream and downstream actors manifest individual disparities as a result of the direct reciprocity and asymmetric payoff mechanisms. More specifically, the downstream actors are less willing to cooperate unless there is a high probability that long-term interactions are ensured; however, a greater level of asymmetries is likely to increase upstream actors' incentives to cooperate even though the interactions could quickly end. The upstream actors also display weak sensitivity to an increase in the total number of actors, which generally results in a reduction in the other actors' motivation for cooperation. It is also shown that the indirect reciprocity mechanism relaxes the overall conditions for cooperative Nash Equilibrium.