Neurobiology of Disease (Mar 2013)
Characterizing infarction and selective neuronal loss following temporary focal cerebral ischemia in the rat: A multi-modality imaging study
Abstract
Background and purpose: Current models dictate that, depending on occurrence of early reperfusion, the ischemic penumbra either undergoes or escapes infarction (i.e., “pan-necrosis”). However, tissue outcome following temporary middle-cerebral artery occlusion (tMCAo) in rodents can also include selective neuronal loss (SNL), which even if subtle may impede functional recovery. In order to explore the pathophysiology of ischemic stroke, determine potential therapeutic targets and monitor effects of therapy, in vivo imaging surrogates of these varied histopathological outcomes applicable in the clinical setting would be useful. Although hyperintense signal on T2-weighted MRI in the chronic post-stroke stage is considered a reliable surrogate of tissue infarction, SNL is not associated with T2W abnormal signal. In the clinical setting, the neuron-specific PET ligand 11C-flumazenil (FMZ) has been used to identify both pan-necrosis and peri-infarct SNL, but this inference has not been histopathological confirmed so far. Here we investigated the late tissue sequelae of tMCAo in the rodent using in vivo T2W MRI and FMZ-PET against post mortem immunohistochemistry as gold standard. Methods: Adult spontaneously hypertensive rats (SHRs) underwent 45 min distal-clip middle-cerebral artery occlusion and, 28 days later, FMZ-PET and T2W-MRI, immediately followed by immunohistochemistry for neuronal loss (NeuN), activated microglia and astrocytosis. Based on standard histopathological definitions, ischemic lesions were classified into pan-necrosis, partial infarction or SNL. NeuN changes and FMZ binding across the whole hemisphere were quantified in the same set of 44 regions-of-interest according to previously validated protocols; linear regressions between these two measures were carried out both within and across subjects. Results: Both cortical pan-necrosis/partial infarction and SNL were present in all rats except one, where SNL was isolated and extensive. Infarction/partial infarction, but not SNL, was associated with T2W hyperintense signals and cortical atrophy. In contrast, FMZ binding was decreased in all types of lesions including SNL, in proportion with NeuN staining intensity both within (p<0.05 to <0.001) and across (p<0.001) subjects, including the subject that showed pure SNL (p=0.01). Conclusion: This novel study revealed three main facts: i) long-term histopathological cortical changes following 45 min tMCAo in SHRs included all three of SNL, partial infarction and frank infarction; ii) T2W MRI showed conspicuous high signal lesions for complete or partial infarction, but no changes for SNL; and iii) FMZ-PET was sensitive to all three types of tMCAo-induced histopathological changes, including isolated SNL, suggesting it is a valid surrogate for the histological sequelae of focal cerebral ischemia. In addition, the finding of almost universal completed cortical infarction at 28 days differed from our previous findings at 14-day survival using the same model and rat strain, where SNL was the almost exclusive outcome, possibly representing delayed infarct maturation. Prospective studies are needed to investigate this interesting possibility.