Sensors (Sep 2022)

Practical and Accurate Indoor Localization System Using Deep Learning

  • Jeonghyeon Yoon,
  • Seungku Kim

DOI
https://doi.org/10.3390/s22186764
Journal volume & issue
Vol. 22, no. 18
p. 6764

Abstract

Read online

Indoor localization is an important technology for providing various location-based services to smartphones. Among the various indoor localization technologies, pedestrian dead reckoning using inertial measurement units is a simple and highly practical solution for indoor localization. In this study, we propose a smartphone-based indoor localization system using pedestrian dead reckoning. To create a deep learning model for estimating the moving speed, accelerometer data and GPS values were used as input data and data labels, respectively. This is a practical solution compared with conventional indoor localization mechanisms using deep learning. We improved the positioning accuracy via data preprocessing, data augmentation, deep learning modeling, and correction of heading direction. In a horseshoe-shaped indoor building of 240 m in length, the experimental results show a distance error of approximately 3 to 5 m.

Keywords