The Natural Breakup Length of a Steady Capillary Jet: Application to Serial Femtosecond Crystallography
Alfonso M. Gañán-Calvo,
Henry N. Chapman,
Michael Heymann,
Max O. Wiedorn,
Juraj Knoska,
Braulio Gañán-Riesco,
José M. López-Herrera,
Francisco Cruz-Mazo,
Miguel A. Herrada,
José M. Montanero,
Saša Bajt
Affiliations
Alfonso M. Gañán-Calvo
Departamento de Ingeniería Aeroespacial y Mecánica de Fluidos, Universidad de Sevilla, 41092 Sevilla, Spain
Henry N. Chapman
Center for Free-Electron Laser Science, Deutsches Elektronen-Synchrotron DESY, Notkestrasse 85, 22607 Hamburg, Germany
Michael Heymann
Institute for Biomaterials and Bimolecular Systems, University of Stuttgart, Pfaffenwaldring 51, 70569 Stuttgart, Germany
Max O. Wiedorn
Center for Free-Electron Laser Science, Deutsches Elektronen-Synchrotron DESY, Notkestrasse 85, 22607 Hamburg, Germany
Juraj Knoska
Center for Free-Electron Laser Science, Deutsches Elektronen-Synchrotron DESY, Notkestrasse 85, 22607 Hamburg, Germany
Braulio Gañán-Riesco
Ingeniatrics Tec. S.L., 41900 Camas, Spain
José M. López-Herrera
Departamento de Ingeniería Aeroespacial y Mecánica de Fluidos, Universidad de Sevilla, 41092 Sevilla, Spain
Francisco Cruz-Mazo
Departamento de Ingeniería Aeroespacial y Mecánica de Fluidos, Universidad de Sevilla, 41092 Sevilla, Spain
Miguel A. Herrada
Departamento de Ingeniería Aeroespacial y Mecánica de Fluidos, Universidad de Sevilla, 41092 Sevilla, Spain
José M. Montanero
Departamento de Ingeniería Mecánica, Energética y de los Materiales and Instituto de Computación Científica Avanzada (ICCAEx), Universidad de Extremadura, 06006 Badajoz, Spain
Saša Bajt
The Hamburg Centre for Ultrafast Imaging, Universität Hamburg, Luruper Chaussee 149, 22761 Hamburg, Germany
One of the most successful ways to introduce samples in Serial Femtosecond Crystallography has been the use of microscopic capillary liquid jets produced by gas flow focusing, whose length-to-diameter ratio and velocity are essential to fulfill the requirements of the high pulse rates of current XFELs. In this work, we demonstrate the validity of a classical scaling law with two universal constants to calculate that length as a function of the liquid properties and operating conditions. These constants are determined by fitting the scaling law to a large set of experimental and numerical measurements, including previously published data. Both the experimental and numerical jet lengths conform remarkably well to the proposed scaling law. We show that, while a capillary jet is a globally unstable system to linear perturbations above a critical length, its actual and shorter long-term average intact length is determined by the nonlinear perturbations coming from the jet breakup itself. Therefore, this length is determined solely by the properties of the liquid, the average velocity of the liquid and the flow rate expelled. This confirms the very early observations from Smith and Moss 1917, Proc R Soc Lond A Math Phys Eng, 93, 373, to McCarthy and Molloy 1974, Chem Eng J, 7, 1, among others, while it contrasts with the classical conception of temporal stability that attributes the natural breakup length to the jet birth conditions in the ejector or small interactions with the environment.