NeuroImage (Jan 2023)
The confound of head position in within-session connectome fingerprinting in infants
Abstract
Individuals differ in their functional connectome, which can be demonstrated using a “fingerprinting” analysis in which the connectome from an individual in one dataset is used to identify the same person from an independent dataset. Recently, the origin of these fingerprints has been studied by examining if they are present in infants. The results have varied considerably, with identification rates from 10 to 90%. When fingerprinting has been performed by splitting a single imaging session into two split-sessions (within session), identification rates were higher than when two full-sessions (between sessions) were compared. This study examined whether a methodological difference could account for this variation. It was hypothesized that the infant's exact head position in the head coil may affect the measured connectome, due to the gradual inhomogeneity of signal-to-noise in phased-array coils and the breadth of possible positions for a small infant head in a head coil. This study examined the impact of this using resting state functional MRI data from the Developing Human Connectome Project second release. Using functional timeseries, fingerprinting identification was high (84-91%) within a session while between sessions it was low (7%).Using N = 416 infants’ head positions, a map of the average signal-to-noise across the physical volume of the head coil was calculated and was used (independent group of 44 infants with two scan sessions) to demonstrate a significant relationship between head position in the head coil and functional connectivity. Using only the head positions (signal-to-noise values extrapolated from the group average map) of the independent group of 44 infants, high identification success was achieved across split-sessions (within session) but not full-sessions (between sessions). Using a model examining factors influencing the stability of the functional connectome, head position was seen as the strongest of the explanatory variables. We conclude within-session fingerprinting is affected by head position and future infant functional fingerprint analyses must use a different strategy or account for this impact.