Scientific Reports (Jul 2017)
Blockade of Axl signaling ameliorates HPV16E6-mediated tumorigenecity of cervical cancer
Abstract
Abstract Axl receptor tyrosine kinase is involved in the tumorigenesis and metastasis of many cancers. Axl expression was markedly higher in human papilloma virus type 16E6 (HPV16E6)-overexpressing HeLa (HE6F) cells and lower in HPV16E6-suppressing CaSki (CE6R) cells than in the controls. SiRNA-mediated knockdown of E6 expression led to increased phosphatase and tensin homolog (PTEN) phosphorylation at Ser380 and attenuated AKT phosphorylation. Expression of membrane-associated guanylate kinase inverted-2 (MAGI-2), an E6-induced degradation target, was induced in E6-siRNA-transfected cells. Moreover, myeloid zinc finger protein 1 (MZF1) binds directly to the Axl promoter in HE6F cells. Axl expression was regulated by HPV16E6-mediated PTEN/AKT signalling pathway, and Axl promoter activity was regulated through MZF1 activation in cervical cancer, which promoted malignancy. Axl silencing suppressed the metastasis of Caski cells and enhanced the susceptibility to NK cell-mediated killing of HE6F cells. In addition, the expression of Axl and MZF1 was highly correlated with clinical stage of cervical cancer and HPV16/18 infection. Taken together, Axl expression was induced by HPV16E6 in cervical cancer cells, suggesting that blockade of Axl signalling might be an effective way to reduce the progression of cervical cancer.