Toxics (Feb 2023)

Stage-Related Neurotoxicity of BPA in the Development of Zebrafish Embryos

  • Jianjun Liu,
  • Wenyu Kong,
  • Yuchen Liu,
  • Qiyao Ma,
  • Qi Shao,
  • Liwen Zeng,
  • Yu Chao,
  • Xiaoyao Song,
  • Jie Zhang

DOI
https://doi.org/10.3390/toxics11020177
Journal volume & issue
Vol. 11, no. 2
p. 177

Abstract

Read online

Bisphenol A (BPA) is one of the most widely produced chemicals in the world used in the production of epoxy resins and polycarbonate plastics. BPA is easily migrated from the outer packaging to the contents. Due to the lipophilic property, BPA is easily accumulated in organisms. Perinatal low-dose BPA exposure alters brain neural development in later generations. In this study, after BPA treatment, the spontaneous movement of zebrafish larvae from the cleavage period to the segmentation period (1–24 hpf) was significantly decreased, with speed decreasing by 18.97% and distance decreasing between 18.4 and 29.7% compared to controls. Transcriptomics analysis showed that 131 genes were significantly differentially expressed in the exposed group during the 1–24 hpf period, among which 39 genes were significantly upregulated and 92 genes were significantly downregulated. The GO enrichment analysis, gene function analysis and real-time quantitative PCR of differentially expressed genes showed that the mRNA level of guanine deaminase (cypin) decreased significantly in the 1–24 hpf period. Moreover, during the 1–24 hpf period, BPA exposure reduced guanine deaminase activity. Therefore, we confirmed that cypin is a key sensitive gene for BPA during this period. Finally, the cypin mRNA microinjection verified that the cypin level of zebrafish larvae was restored, leading to the restoration of the locomotor activity. Taken together, the current results show that the sensitive period of BPA to zebrafish embryos is from the cleavage period to the segmentation period (1–24 hpf), and cypin is a potential target for BPA-induced neurodevelopmental toxicity. This study provides a potential sensitive period and a potential target for the deep understanding of neurodevelopmental toxicity mechanisms caused by BPA.

Keywords