Asian-Australasian Journal of Animal Sciences (Dec 2013)

Effects of Trichostatin A on Development of Porcine Embryos Derived from Somatic Cell Nuclear Transfer

  • Yeon Ik Jeong,
  • Chi Hun Park,
  • Huen Suk Kim,
  • Yeon Woo Jeong,
  • Jong Yun Lee,
  • Sun Woo Park,
  • Se Yeong Lee,
  • Sang Hwan Hyun,
  • Yeun Wook Kim,
  • Taeyoung Shin,
  • Woo Suk Hwang

DOI
https://doi.org/10.5713/ajas.2013.13029
Journal volume & issue
Vol. 26, no. 12
pp. 1680 – 1688

Abstract

Read online

Many different approaches have been developed to improve the efficiency of animal cloning by somatic cell nuclear transfer (SCNT), one of which is to modify histone acetylation levels using histone deacetylase inhibitors (HDACi) such as trichostatin A (TSA). In the present study, we examined the effect of TSA on in vitro development of porcine embryos derived from SCNT. We found that TSA treatment (50 nM) for 24 h following oocyte activation improved blastocyst formation rates (to 22.0%) compared with 8.9% in the non-treatment group and total cell number of the blastocysts for determining embryo quality also increased significantly (88.9→114.4). Changes in histone acetylation levels as a result of TSA treatment were examined using indirect immunofluorescence and confocal microscopy scanning. Results showed that the histone acetylation level in TSA-treated embryos was higher than that in controls at both acetylated histone H3 lysine 9 (AcH3K9) and acetylated histone H4 lysine 12 (AcH4K12). Next, we compared the expression patterns of seven genes (OCT4, ID1; the pluripotent genes, H19, NNAT, PEG1; the imprinting genes, cytokeratin 8 and 18; the trophoblast marker genes). The SCNT blastocysts both with and without TSA treatment showed lower levels of OCT4, ID1, cytokeratin 8 and 18 than those of the in vivo blastocysts. In the case of the imprinting genes H19 and NNAT, except PEG1, the SCNT blastocysts both with and without TSA treatment showed higher levels than those of the in vivo blastocysts. Although the gene expression patterns between cloned blastocysts and their in vivo counterparts were different regardless of TSA treatment, it appears that several genes in NT blastocysts after TSA treatment showed a slight tendency toward expression patterns of in vivo blastocysts. Our results suggest that TSA treatment may improve preimplantation porcine embryo development following SCNT.

Keywords