Remote Sensing (May 2020)
Identification and Analysis of Microscale Hydrologic Flood Impacts Using Unmanned Aerial Systems
Abstract
The need for accurate and spatially detailed hydrologic information is critical due to the microscale influences on the severity and distribution of flooding, and new and/or updated approaches in observations of river systems are required that are in line with the current push towards microscale numerical simulations. In response, the aim of this project is to define and illustrate the hydrologic response of river flooding relative to microscale surface properties by using an unmanned aerial system (UAS) with dedicated imaging, sensor, and communication packages for data collection. As part of a larger project focused on increasing situational awareness during flood events, a fixed-wing UAS was used to overfly areas near Greenwood, MS before and during a flood event in February 2019 to provide high-resolution visible and infrared imagery for analysis of hydrologic features. The imagery obtained from these missions provide direct examples of fine-scale surface features that can alter water level and discharge, such as built structures (i.e., levees and bridges), natural storage features (low-lying agricultural fields), and areas of natural resistance (inundated forests). This type of information is critical in defining where and how to incorporate high-resolution information into hydrologic models and also provides an invaluable dataset for eventual verification of hydrologic simulations through inundation mapping.
Keywords