Energies (Jun 2022)

An Adaptive Hybrid Control of Grid Tied Inverter for the Reduction of Total Harmonic Distortion and Improvement of Robustness against Grid Impedance Variation

  • Tila Muhammad,
  • Adnan Umar Khan,
  • Muhammad Tajammal Chughtai,
  • Reyyan Ahmad Khan,
  • Yousra Abid,
  • Muhammad Islam,
  • Sheroz Khan

DOI
https://doi.org/10.3390/en15134724
Journal volume & issue
Vol. 15, no. 13
p. 4724

Abstract

Read online

Background: Grid-tied inverters play an efficient role in the integration of renewable energy resources with utility grids. Motivation: However, the interconnection between power converters and the grid has been seen to be responsible for various stability issues such as weak grid, and under weak grid conditions the injection of power to the grid becomes a challenging task due to continuously varying grid impedance affecting the stability margins as a result. Additionally, the grid impedance-related issues boost the voltage harmonics which further devalue its performance. These voltage harmonics propagate through the Phase-Locked Loop (PLL) circuit to the control unit of the inverter which in turn amplifies the low order harmonics of the inverter. Method: The aim of this research is to introduce a novel strategy that decreases the effect of grid impedance-variations on the performance and stability of an inverter. Hence, an adaptive hybrid mode control technique consisting of two parts is proposed in this research. The current regulator part is implemented in a synchronous reference frame for its gain and time parameters to improve the performance, stability, and response time. The adaptive harmonic compensators are implemented in a stationary reference frame for harmonic compensation purposes. This adaptive nature of harmonic compensator can effectively work in the case of frequency variation where the fixed value based harmonic compensator fails. Results: The adaptive harmonic compensators improve the performance by reducing total harmonic distortion (THD), reduce computation and improve stability when the grid has distorted voltage, variation in grid impedance and frequency. Impact and utility: Our results show that the system becomes less sensitive to grid impedance variations which makes the proposed technique very relevant to the stability performance applications.

Keywords