Cement (Dec 2022)

Thermo-responsive poly(N-isopropylacrylamide) (PNIPAM) hydrogel particles improve workability loss and autogenous shrinkage in cement paste

  • Anastasia N. Aday,
  • Mohammad G. Matar,
  • Jorge Osio-Norgaard,
  • Wil V. Srubar, III

Journal volume & issue
Vol. 10
p. 100049

Abstract

Read online

In this work, we show that non-superabsorbent, thermo-responsive poly(N-isopropyl acrylamide) (PNIPAM) hydrogel particles (< 250 μm) can reduce autogenous shrinkage in cement paste and improve early-age stiffening that can be caused by traditional superabsorbent polymers (SAPs). Swelling measurements in DI water and cement filtrate solution suggest that SAP-induced early-age stiffening is caused by its super-absorbency in low-ionic solutions – a behavior not exhibited by non-superabsorbent PNIPAM. Addition of PNIPAM resulted in a 29% and 60% reduction in autogenous shrinkage strain at 14 days when used alone (0.3 wt% PNIPAM) and in combination with SAP (0.15% PNIPAM, 0.15% SAP), respectively, compared to a Control with no polymer addition. Furthermore, an addition of 0.3 wt.% PNIPAM exhibited a ∼29% and ∼37% decrease in static yield stress compared to a Control and 0.3 wt% SAP-modified cement pastes, respectively. Taken together, the results provide initial evidence to suggest that the use of hydrogels as internal curing agents may not necessarily require super-absorbency to reduce autogenous shrinkage. Non-superabsorbent hydrogels, like PNIPAM, may help reduce autogenous shrinkage while alleviating the effects of SAP-induced early-age stiffening.

Keywords